
Final Report

Northrop Grumman

Weapon System Support Software

Harlan Mitchell

Laurel Enstrom

Team Controller
Northern Arizona University
Flagstaff, Arizona
May 9th, 2024

Zachary Parham (Team Lead): zjp29@nau.edu
Tayyaba Shaheen (Mentor): ts2434@nau.edu
Bradley Essegian: bbe24@nau.edu
Brandon Udall: bcu8@nau.edu
Dylan Motz: djm658@nau.edu

mailto:zjp29@nau.edu
mailto:ts2434@nau.edu
mailto:bbe24@nau.edu
mailto:bcu8@nau.edu
mailto:djm658@nau.edu

1.0 - Table of Contents

1.0 - Table of Contents...2
2.0 - Introduction... 3

2.1 - Our Clients and the Problem... 3
2.2 - The solution... 3

3.0 - Process Overview.. 4
3.1 - Meetings.. 4
3.2 - Development and Version Control.. 5

4.0 - Requirements... 6
4.1 - Requirement Acquisition...6
4.2 - Requirements Breakdown..7
4.3 - Requirements Traceability Matrix...8
4.4 - Software Level Requirements... 10

5.0 - Architecture and Implementation.. 12
5.1 - External Controller Component...13
5.2 - Software Backend..14

5.2.1 - Events... 14
5.2.2 - Status.. 15
5.2.3 - Electrical...15

5.3 - Log File..15
5.4 - Installer.. 16

6.0 - Testing... 16
6.1 - Unit Testing... 16
6.2 - Integration Testing...17
6.3 - Usability Testing..17

7.0 - Project Timeline...17
8.0 - Future Work...18
9.0 - Conclusion...19
10.0 - Glossary...19
Appendix A: Development Environment and Toolchain...21

Hardware..21
Toolchain..21
Setup.. 21
Production Cycle..22

2.0 - Introduction

2.1 - Our Clients and the Problem
Our clients work for Northrop Grumman, one of the largest aerospace and defense contractors in
the world. With an annual revenue of $30 billion, Northrop Grumman has led the development of
many revolutionary projects for our United States military. Part of working with these advanced
weapon systems is the ability to diagnose problems that occur with them.

These systems produce a massive amount of complex data that is not easy to work with. When
one of Northrop Grumman’s customers runs into some type of problem or issue, they will
dispatch an engineer with a tool to collect this data. From there they will work to resolve the
issue; traveling back and forth as many times as necessary.

The apparent problem with this is that the end user lacks the ability to properly diagnose
problems with their products independently. The existing tool that Northrop Grumman has is
intended for engineers only and contains complex or insignificant data that is not important to
the end user. Furthermore it is very expensive to dispatch engineers as it costs time, resources
and most importantly money to do so.

2.2 - The solution
Our proposed solution is a program running a graphical user interface (GUI) which can read in
data directly from Northrop Grumman’s weapon controllers and display the information in real
time. Our solution relies on RS422 serial protocol to communicate with the weapon controller
where it will extract data and render it into one of our 4 key pages based on the category of
information it falls under. Our four pages along with their purposes are listed below.

● Events page: Takes the form of a text log and displays events and errors which represent
notable points in time in which something happened, examples of this would be a firing
event or a weapon jam error.

● Status page: Represents the state of the weapon which can be measured at any point in
time. Some examples include trigger status (i.e. are the trigger(s) of the weapon engaged,
indicating an attempt at firing, or disengaged) firing mode (i.e. the weapons current mode
of operation, is it on safe, semi-automatic, fully-automatic or burst).

● Electrical page: Lists the various subcomponents of the weapon and their measured
amps and voltages.

● Connection page: Gives the user the option to select and configure their serial port in
order to be able to effectively communicate with the weapon controller. Among the

adjustable settings are baud rate which represents the rate of data transmission over the
serial port and flow control which defines the behavior the communicating serial ports
will use in order to decide whose turn it is to transmit data at any given point in time.

We have also provided 2 additional pages other than the 4 essential pages mentioned previously.
The first is a notifications system which displays notifications involving the programs back end
processes. One such example would be if an unrecognized or improperly formatted message is
received by our application, it will render a notification for the user. Another example would be
session statistics which are calculated and displayed in the notification after a disconnect occurs
with the weapon controller. Clicking on the notifications page will display all of the notifications
generated that session using red to denote errors and green to denote routine operations.

Finally we have added a user settings page where the user can adjust the behavior of various
parts of our application for example toggling color coding in the events page or modifying the
timeout value which represents the number of seconds our program will wait before
disconnecting if the controller is not responding. All of these settings as well as the connection
settings are saved and loaded cross session meaning if you launch the application the next day it
will remember your preferred settings from the previous session.

Our application is designed to be simple so it can be used by both engineers and customers of
Northrop Grumman. It is designed to be easily installable on devices running windows or linux
so that it can be obtained, set up and used in a matter of minutes. Furthermore it is designed to be
modular and easily modifiable so that Northrop Grumman can further adjust the application
based on their specific needs at any point in the future.

By implementing these solutions Northrop Grumman can more effectively diagnose problems
with their weapon systems and more importantly, they can give their customers the tools they
need to also stay informed on the exact condition of their products.

3.0 - Process Overview
During the development of the Weapon System Support Software, the team had developed a
process for organizing the work that needs to be done. More specifically, the team had used an
Agile approach, meaning that work was done in sprints. These sprints spanned over two weeks
and held four different meetings, which will be discussed later in this section.

3.1 - Meetings
During the course of the second semester of the capstone project where implementation started,
the team used four different meetings to organize the development. These meetings were:

● Sprint planning - These meetings occurred every week on Mondays. Sprint planning
meetings were used to add issues to the current sprint or plan the upcoming sprint;

● Client Meetings - Client meetings were every week on Tuesday mornings. These
meetings usually consisted of the team demonstrating the most recent updates to the
application or asking questions on development. Having these meetings occurring twice
per sprint proved invaluable to our development process;

● Mentor Meetings - Meetings with our mentor were used to guide the completion of in
class documentation and deliverables and occurred every Wednesday. Combined with
that, the team also updated the mentor with major improvements in the application as
well as any questions we had.

● Issue Refinement - Issue refinement meetings occurred every other Friday. These
meetings were used to narrow down the scope of issues, break them into smaller issues or
include specific goals the issue would meet once resolved.

These meetings served as an organizational tool that would prepare the team for the current or
upcoming sprint. It was very important to limit the number of meetings to the absolute minimum
to not waste any time.

Screenshot 1: Screenshot showing the weekly meetings

3.2 - Development and Version Control
When planning for the development of the application, the team identified that an external tool
responsible for tracking issues and development would lead to friction. Because of this, the team
opted to use the github issue tracker. Using this issue tracker that was integrated with the version
control system proved to be the best solution.

For the version control software, the team chose Git and GitHub.com to host the repository. The
most appropriate branch structure for Agile development can be seen below. The team started
with the main branch, which contains the finished and approved version of the MVP developed
in the previous sprint. Branched off of the main branch is the individual sprint_x branch, which
as the name suggests, holds all current development work performed by the team during the
sprint. For individual issues the team branched off of sprint_x and developed single issues or
kept a running branch for the team member’s commits.

Diagram 1: GitHub branch structure

4.0 - Requirements

4.1 - Requirement Acquisition
In order to define the requirements for this project we met weekly with our clients where we
would discuss different aspects of the project and assess our clients needs in relation to the tools
we had available to us. We would then propose a list of requirements for approval. These
requirements were then reviewed by our clients before feedback was given and recorded by our
team. We would then consider this feedback and come to the next meeting with a revised list of
requirements and repeat the process as many times as necessary until the clients fully approved
of the requirements we came up with. We found that this iterative process was effective and
thorough in defining the goals of the project in a manner that everyone approved of and could
understand.

4.2 - Requirements Breakdown

Diagram 2: Requirements Breakdown

For this project we decided to divide our requirements into 3 categories. The first level is the
client level requirements. These represent things our clients directly requested. For example,
“you must use RS422 Serial Protocol for your communications with the weapon controller.” Is
an example of one of our client level requirements.

The next level is the system level requirements, these represent verifiable operations involved
with implementing the client level requirement. A single client level requirement will have one
or more system level requirements that if we can prove are satisfied by our application, we can
prove the client level requirement is satisfied.

The final level is the software level requirements. These represent modular sub-processes that
will be used to implement the system level requirements. A software level requirement can be
thought of as a function within a program. A single software level requirement can be associated
with 1 or more system level requirements from any client level requirement.

4.3 - Requirements Traceability Matrix
Here is the traceability matrix we designed for our clients which defines all of our requirements
from each category. For better readability, the software level requirements are limited to just the
name within the matrix as many are used more than once. However they are defined at the
bottom of this section. For definitions of specific terms, please refer to the glossary in section
10.0.

Client requirement System requirements Software requirements

CR01
The data display module shall
be a desktop application.

R01
The data display module shall
be an .exe file.

NA

R02
The data display module shall
display a GUI.

SR15 - SR19

CR02
The data display module shall
read input data via RS422
serial protocol from the
controller simulator.

R03
The data display module shall
be capable of serializing /
deserializing messages
received via an RS422 serial
port.

SR01 - SR05
SR08

R04
The controller simulator shall
be capable of serializing /
deserializing messages
received via an RS422 serial
port.

SR01 - SR05
SR08

CR03
The data display module shall
have the ability to write event
data into a log file

R05
The data display module shall
be capable of generating a log
file including all known
events when requested by the
user

SR11
SR15

R06
The user shall be able to
determine if a log file will be

SR11
SR20

automatically generated after
a session.

R07
The user shall be able to
determine how many auto
saved log files will be kept
before overwrites occur on
the oldest autosaved file.

SR20

CR04
The data display module shall
display all weapon status
information directly to the
application’s window for the
duration of a session.

R08
The controller simulator shall
send status updates through
the designated serial port
every 250 milliseconds (2
seconds).

SR01
SR05
SR14

CR05
The controller simulator shall
send event updates to the data
display module.

R09
The controller simulator shall
send event updates through
the serial port at most 100
milliseconds after they are
generated. second after they
are generated.

SR01
SR05
SR12
SR13

CR06
The data display module shall
not require admin rights to
install, set up, or use.

R10
The data display module shall
not require admin rights to
install setup or use

NA

CR07
The data display module shall
include filtering options to
filter events and errors

R11
The data display module shall
have the capability to display
only errors to the Events tab
of the GUI

SR13

R12
The data display module shall
have the capability to display
only cleared errors to the
events tab of the GUI.

SR21

Table 1: Traceability Matrix

4.4 - Software Level Requirements

Serial Communication:

● SR01 - The software shall be capable of generating serialized versions of given status

data and event data.

R13
The data display module shall
have the capability to display
only active errors to the
events tab of the GUI.

SR21

R14
The data display module shall
have the capability to display
only non-error events to the
events tab of the GUI.

SR21

CR08
The system and its
environment shall be installed
via an installer file.

R15
The system and its
environment shall be installed
via an installer file

NA

CR09
The system shall be portable
on Windows 10 or 11

R16
The system shall be portable
on Windows 10 or 11

NA

CR10G
The system should be
portable on Debian linux
distributions

R17G
The system should be
portable on Debian linux
distributions

NA

● SR02 - The software shall be capable of generating status data given serialized status

data.

● SR03 - The software shall be capable of generating an event string given a serialized

event string.

● SR04 - The software shall be capable of generating electrical data given serialized

electrical data.

● SR05 - The software shall be capable of sending serialized data through a serial port.

● SR06 - The software shall be configurable to fill one of the the following roles during

handshake protocols

a. send the first contact message every 5 seconds until a response is received

b. listen for the first contact message, then respond.

● SR07 - Handshake protocols shall be implemented using the Boost.Asio serial library

● SR08 - The software shall be able to listen for and record serialized bit strings from a

given serial port.

● SR09 - The software shall be able to pause serial communication

● SR10 - The software shall be able to resume serial communication

● SR11 - The software shall be capable of storing all event strings received via serial

communication until a new session is started or the program ends.

Controller Simulator:

● SR12 - The software shall be capable of generating event strings with random

parameters given a collection of event messages.

- Note: See terminology section for definitions of event string, event message and

parameters

● SR13 - The software shall be capable of reading event strings from the command line

interface.

● SR14 - The software shall be capable of generating randomized status data.

Data Display Module:

● SR15 - The software shall be capable of writing an event log file in csv format, given a

collection of events upon user request.

● SR16 - The software shall be capable of opening the events page when the events button

is pushed.

● SR17 - The software shall be capable of opening the status page when the status button is

pushed.

● SR18 - The software shall be capable of opening the electrical page when the electrical

button is pushed.

● SR19 - The software shall be capable of opening the connection settings page when the

connection settings button is pushed.

● SR20 - The software shall allow the user to input how many auto saved log files they

want to be kept before overwrites occur on the oldest autosaved file.

● SR21 - The software shall allow the user to input what filter they want on the event page

out of the following options.

a. Only errors

b. Only cleared errors

c. Only active errors

d. Non error events

5.0 - Architecture and Implementation
For the program’s architecture, we have designed a simple diagram (Figure 1) that breaks down

the system into several components as seen below. Similar to a model-view-controller

architecture pattern, each component is a separate piece in which the back-end acts as a liaison

between them all. The top of the architectural diagram starts with the whole system being

packaged and installed via a third party installer, known as Inno Setup. This is used to push the

product to production when on a stable release. There is also the Controller component, which is

what supplies our program with the information that needs to be interpreted and manipulated.

Within the actual meat of the application, there are three main components that all interface with

each other: the backend, the GUI, and the log file management. The software backend is

essentially the brains of the Data Display Module (DDM), also known as the GUI, and as well as

the brains for the log file generation.

Diagram 3: Architecture Diagram Diagram 4: Graphical Diagram

5.1 - External Controller Component
The weapon controller is responsible for supplying our program with the data it needs to update

its GUI and log files. The controller’s purpose is to manage the weapon and record any relevant

weapon data found during operation. This data is then sent via RS422 serial communication to

our program's back end. Because our team was unable to get our hands on a real controller demo,

we have developed a simulator that should act and perform similarly to the real thing. A

Northrop Grumman engineer can manage the simulator in the “Developer” tab of our program.

This entire page and all of its subcomponents can be completely disabled (without compiling) by

modifying the DEV_MODE preprocessor directive in the source code.

Screenshot 2: Developer Page

5.2 - Software Backend
The back-end component’s main responsibility is to be able to create a connection with an

attached serial device and read messages sent through that port. Furthermore, our software must

figure out how to properly interpret those serial messages—which could be separated into errors,

events, status updates, or electrical subcomponents. Data is stored in their respective class

objects and frequently updated as serial communication occurs.

5.2.1 - Events
The “Events” class in our software is designed to manage and store significant information about
events and errors received from the (simulated) controller. It consists of two linked lists
structures: an EventNode and ErrorNode. The EventNode structure stores data related to
non-error events, such as a unique identifier, a timestamp, the event message, and a pointer to the
next node in the list. The ErrorNode structure inherits all this from EventNode, and extends the
functionality to handle error events. It includes two additional fields which are the error’s current
status (cleared or active) and the location of the error in the automatic log file (for use later on).
Also, it is a separate data structure so it also has its own pointer to the next node in the error
linked list. Besides the typical utility functions you would find for a linked list, it also has

utilities for logging event data to files and loading data from log files. All of the information in
these linked lists is processed and displayed in the “Events” tab of our GUI.

5.2.2 - Status
As a significant part of our requirements, we must also store general information about the
weapon system as these events/errors are occurring. The “Status” class includes member
variables that represent different aspects of the system’s status; including whether the system is
armed, the status of either of the two triggers, the overall controller state, the firing mode, feed
position, burst length, firing rate, controller version, and finally the CRC version. It also stores
other relevant counters such as the total amount of errors and events, which is also in the Events
class. All of this information is displayed in real time (as we receive the messages) in the
“Status” tab of our GUI, with custom graphics for the feed position and firing mode.

5.2.3 - Electrical
Last but not least is our “Electrical” class in our software. It is designed to manage and represent
the electrical components’ information within the weapon system. Since there can be any number
of components depending on the weapon system, we use another linked list data structure
(electricalNode) to dynamically load, manipulate, and output electrical data to our GUI. The
structure only has a few member variables: a unique identifier, the component name, voltage,
current amps, and a pointer to the next node in the linked list. All of the electrical components
are dynamically loaded into the “Electrical” tab of our GUI.

5.3 - Log File
The log file component of our software is a crucial mechanism for logging and storing
event/error data that has been generated throughout an entire session. This enables the system to
capture and persist critical information, facilitating troubleshooting and analysis. Each entry in
the log file corresponds to a specific event or error encountered during a session with the
controller. This component of our program is seamlessly integrated into our software
architecture, allowing the system to automatically write data to the log file during runtime. The
capability to retrieve and read data from a log file for analysis is also an important aspect of our
architecture. It allows engineers or maintenance technicians to analyze data in a clean and
formatted environment, right within the program.

5.4 - Installer
Finally, the installer component in our software is responsible for facilitating the deployment and
installation of the application on any target system. It serves as the gateway to access and utilize
the software, with little to no setup for the end users. In our implementation, we use the Inno
Setup installer, which is a third party tool for creating Windows installers. It also allows us to
maintain any software license we or Northrop Grumman may prefer, since all Qt libraries we use
have the LGPL license and are dynamically linked (.dll files) with the installer. This separates
our executable entirely from the Qt framework and abides by the LGPL license agreement. It is
seamless for the end user since the installer includes all the DLL files without requiring users to
download the entire framework externally.

6.0 - Testing
Testing the application came in three waves. The first of which was incremental unit testing, then
integration testing, and finally usability testing. To test our software the team has employed the
use of QTest, a QT-based testing library that has two core testing functions:

● QCOMPARE();
● QVERIFY().

The QCOMPARE function is used to check the accuracy of a value against an expected value
while QVERIFY checks a boolean value. QVERIFY can be compared to an assertion in other
testing libraries.

6.1 - Unit Testing
Unit testing represents the majority of test cases in the application. The team has defined a “unit”
to be a pivotal function. Alongside testing the “correct” functionality, the team has also included
bad input tests for functions who take in parameters. These bad input tests fit into one of two
categories: Incorrect type or incorrect format. Originally, the primary functions could not handle
incorrect inputs or errors. These bad input tests have expanded the capability of the function’s
error handling.

An incorrect type test sees the function pass in a variable with an incorrect type. Our functions
will recognize the incorrect input and fail. In our tests, we predict this behavior with QVERIFY
and ensure the function returns false.

An incorrect format test is similar to an incorrect type, however it is only used for a string data to
node function where a string containing a node id, message and data is passed through. These
tests ensure that the case of a missing item is handled gracefully.

6.2 - Integration Testing
Our application contains two main sections where functions are interconnected: Log file outputs
and serial communication. The log file output involves testing not only the file generation
function but also the actual log file. Testing for the serial communication involves a similar
approach where the team creates a pair of virtualized ports and sends test messages to and from
and analyzes the response from each.

6.3 - Usability Testing
To ensure there are no roadblocks or bugs associated with the GUI, the team is incorporating
usability testing. The team created three use cases where a predicted end user might navigate to.
These include connecting, viewing data on the events page, disconnecting and downloading a log
file and changing the connection and user settings.

The team dispersed the application with a specific checklist to users with an average knowledge
of technology, which is quantified as being able to open an application or visit a website with a
web browser. The users will then complete the tasks and fill out the check list. These tests aim to
uncover any road blocks associated with a user’s workflow or any bugs with the GUI.

7.0 - Project Timeline

Diagram 5: Project Stage Overview

After receiving our initial project guidelines from Northrop Grumman, and after garnering the
most significant requirements, we began our implementation in December of 2023.

Requirements were one of the most significant aspects of last semester, where we were
constantly refining our requirements every single week with the clients until they were accurate
and traceable. In this second semester, we primarily focused on our biweekly sprints for
implementation and testing.

Diagram 6: Project Stage Overview

Each sprint consisted of 20 to 25 issues that were evenly distributed to each member of the team,
based on the project requirements we still needed to fulfill. At the end of each biweekly sprint,
the clients were given a demonstration of what has changed and what is still to come. Dylan
Motz focused heavily on the front-end implementation of things, and making sure that the
software was as user friendly as possible. Brandon Udall led the development of much of the
controller simulation operations and the serial communication. Finally, Zachary Parham and
Bradley Essegian set up most of the data structures and unit tests for the entire system. Currently,
we are in an impromptu sprint 7 where we are focusing on minor UI/backend refinements.

8.0 - Future Work
For the future we will be handing over our work to Northrop Grumman. The team will be

handing over software documentation, source code files, the installer, and the guides to jumpstart

Northrop’s software engineers. These guides will include how to use QT since the software is

built around using QT and also a guide on how to use the Inno setup. Northrop’s engineers will

be continuing our work and they will have access to the actual weapon controller. So since our

team didn’t have access to the actual weapon controller we had to simulate it. Therefore we

couldn’t make an accurate program that would work with the weapon controller. So the team

made the program modular and simple to understand so when Northrop’s engineers take over

there should only be a few functions that need to be changed. We also pointed out these functions

that will probably need to be changed and made all the code easily readable. Other than that a

few features that could be added is light mode since our program only has dark mode and maybe

instead of a log file they could output the logs to another file type like a microsoft word

document. Overall this software will help anyone at Northrop Grumman diagnose weapon data

and save time and resources.

9.0 - Conclusion
Testing weapons deals with lots of complex data that only engineers would understand and this
means an engineer needs to be dispatched to testing sites to test these weapons. This takes away
a lot of time and resources from other engineering tasks. Our goal is to make an easy to use
desktop application that any person can diagnose weapon data. The software we built
accomplishes the following:

● Easily diagnose/filter weapon data
● The software displays the following

○ Weapon events/errors
○ Status of the weapons
○ Electrical components

● Modular and simple framework
This software will help Northrop Grumman save time and resources since the engineers won’t
have to travel as much. Also since the software’s framework was simple and modular when
Northrop’s engineers took over it shouldn’t take much time for it to work with the weapon
controller. Overall the team is thankful to our clients for sponsoring this project and we have
learned lots of valuable skills both from class and our clients that have made us better software
engineers.

10.0 - Glossary
System - All files developed for the purposes of satisfying the client level requirements.

- Data display module - displays status updates and events to the user

- Controller simulator - Generates status updates and events then sends via RS422 serial

protocol to the data display module.

- Event Log file - Will be generated by the data display module to contain 1 or more event

strings encountered during a session.

- Installer - will deploy the project in the customers system and perform environment

setup and initialization. Will record initial user preferences and take them into account

during installation. I.e. “Do you want a shortcut on your desktop?”

Environment - The directory our system will be placed in and all of its contents.

Serialized data - A string of 1s and 0s which can be translated to traditional data such as strings

and integers. Only serialized data can be sent through serial ports

Serial Port - The physical hardware port which can send and receive serialized data.

Status data - (See class diagram for specifics) General data pertaining to the weapon which can

be measured at any point in time during session.

Event String - A string of the format “<time> <event message> <param 1> <param 2> <param

3>” generated by the controller simulator to simulate the occurrence of a weapon related event.

The parameters can be NULL, but the event message must be specific text outlining what the

event is. Ex. “[00:12:41] Weapon overheat 237 200” where 237 represents measured barrel temp

and 200 represents max recommended barrel temp in degrees celsius.

Session - The time measured from the moment the controller sim is connected to the data display

module to the moment the controller sim is disconnected from the data display module.

Handshake Protocols - A necessary set of agreements between two devices before they perform

serial communication.

Electrical data - A data structure containing float values for current and voltage and a name for

the component.

Command Line Interface - method of interacting with programs on a computer by inputting

text commands /data/ prompts.

Automatic Log File Generation - The ability for the system to automatically generate an event

log file after a session has ended.

Appendix A: Development Environment and

Toolchain

Hardware
- Any computer able to run windows 10/11 and linux will be able to run our software.

Toolchain
- QT: Used to edit both the backend code and front end design

Libraries:
- Qt Serial Bus
- Qt Serial Port

- com0com: Used to create virtualized ports to test and run the software on one device

Setup
- QT: Install the QT Community Edition found at this link here:

https://www.qt.io/download-qt-installer
1. Sign in with an account or create a new one
2. Accept the terms of service
3. Make sure to install all the required packages/libraries and beyond the defaults

select the following options
a. Under Qt 6.7.0

i. Select MinGW 11.2.0 64-bit
b. Libraries

i. Qt Serial Bus
ii. Qt Serial Port

c. Developer and Designer Tools
i. Select MinGW 11.2.0 64-bit
ii. CMake 3.27.7
iii. Ninja 1.10.2

https://www.qt.io/download-qt-installer

- com0com:Install com0com for the virtualized ports and the link can be found
here:https://sourceforge.net/projects/com0com/files/com0com/2.2.2.0/com0com-2.2.2.0-
x64-fre-signed.zip/download

1. Follow the installer setup
2. On the Choose Components

a. Uncheck the box labeled CNCA0<->CNCB0
3. Then finish up the installer
4. At the end of the installer select

a. Launch Setup Command Prompt
5. Once command prompt is launched use the following commands

a. install PortName=COM9 PortName=COM10
b. list

i. This is to make sure the ports are set up correctly

Production Cycle
- QT

1. Launch QT
2. Once QT is open select Open Project
3. Find the project in your folders and select the CMake files tied to the project
4. Now you are able to edit/run the program
5. To run the program click the green arrow on the bottom left
6. In the program make sure on both connection page and developer page you are

using the ports you setup using com0com

https://sourceforge.net/projects/com0com/files/com0com/2.2.2.0/com0com-2.2.2.0-x64-fre-signed.zip/download
https://sourceforge.net/projects/com0com/files/com0com/2.2.2.0/com0com-2.2.2.0-x64-fre-signed.zip/download

